Text Structure - Aware Classification

نویسندگان

  • Zoran Dzunic
  • Amir Globerson
  • Martin Rinard
  • Yoong Keok Lee
  • Benjamin Snyder
  • Tahira Naseem
  • Christina Sauper
  • Erdong Chen
  • Harr Chen
  • Jacob Eisenstein
  • Pawan Deshpande
  • Igor Malioutov
  • Viktor Kuncak
  • Karen Zee
  • Michael Carbin
  • Patrick Lam
  • Darko Marinov
چکیده

Bag-of-words representations are used in many NLP applications, such as text classification and sentiment analysis. These representations ignore relations across different sentences in a text and disregard the underlying structure of documents. In this work, we present a method for text classification that takes into account document structure and only considers segments that contain information relevant for a classification task. In contrast to the previous work, which assumes that relevance annotation is given, we perform the relevance prediction in an unsupervised fashion. We develop a Conditional Bayesian Network model that incorporates relevance as a hidden variable of a target classifier. Relevance and label predictions are performed jointly, optimizing the relevance component for the best result of the target classifier. Our work demonstrates that incorporating structural information in document analysis yields significant performance gains over bag-of-words approaches on some NLP tasks. Thesis Supervisor: Regina Barzilay Title: Associate Professor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

Arabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents

Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009